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Abstract. Particle standard diffusio® (K ) in 2D homogeneous, isotropic, stationary, random
velocity fields is studied numerically as a function of the dimensionless Kubo nukhtlefined as
the ratio between the correlation time of the velocity field and its sweeping time. The three cases

corresponding to the energy spectra proportional, in the inertial range, respectivets; o3
andk? are considered and two different power law regimes are found for large butKinite

1. Introduction

In the passive transport of mass or heat the coupling between advection and molecular
diffusivity is a difficult problem of considerable practical and theoretical interest in a great
variety of differentfields, such as geophysics, chemical engineering and disordered media[1,2].

Taking into account the molecular diffusion, the Lagrangian motion of a test particle is
described by the Langevin equation

z=uv(x,1)+¢ (1)
wherev(z, 1) is the Eulerian velocity field at the positianand the time, and¢ is a Gaussian
white noise with zero mean and correlation function

(&i(E; (1)) = 2Dqgé;;8(r — 1) (2)
the coefficientDy being the molecular diffusivity. 18 is the density of tracers, the Fokker—
Planck equation associated to (1) is

3,0 + 0(vO) = Dyd’o. ()

For times much larger than the typical time @fthe large-scale density fiel®) (i.e. the
field ® averaged over a volume of linear dimension much larger than the typical length of the
velocity fieldv) obeys a standard diffusion Fick equation:

3,(©) = DEy? (©) i,j=1,....d. (4)

ij7xix
Allthe (often nontrivial) effects due to the presence of the velocity field are in the eddy diffusion
coefficientD%. Of course if the equation (4) holds then one hasr) —x(0)?) ~ 2Dfrand
we speak ostandard diffusionIn practice at large time the test particle behaves as a Brownian
particle. There also exists the possibility of anomalous diffusion{@&r) — x(0))?) ~ %
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with v > % see e.g. [3]. Here we consider only fields for which standard diffusion surely
occurs [4,5].

The multiscale technique allows us to compute [6, 7, 10] the eddy diffusivity tensor by
solving theauxiliary equation

[9, + B(v-) — Dpd?]x = —v. (5)
Actually, the effective eddy diffusivity tensdbfj. is given by

DS = Dqd;; — %((UiXﬂ + (v i) ©)

where the vector field,, the auxiliary field obeys (5). Numerical methods are generally
needed to solve it, but there are a few cases where one can obtain the auxiliary field
analytically [8,10-13].

Of course, one can also compute the diffusion coefficients with a direct numerical
simulation of an ensemble of particles evolving according to equation (1). Nevertheless,
a numerical study of equation (5), and then the computatiorﬁ)g)fusing (6), has some
advantages. Since in the multiscale technique one already works in the asymptotic regime
it is possible to avoid unpleasant long crossover regimes in the diffusion process which can
give difficulties in the computation of the diffusion coefficients. In this paper we consider the
passive transport in a 2D incompressible, statistically stationary, homogeneous and isotropic
random velocity field(x, t), specified by the correlation tensor

iz, (', 1)) = Cjj(z, x', 1, 1) (7
and related to the energy spectriik) by the equation

/ dkE (k) = (v,v, )(0,0) = Zc,,(o 0) =v3 8)

as specified in appendix A. We analyse the behaviour of the diffusion coefficients in random
fields mimicking fully developed turbulence as a function of the dimensionless Kubo number
K [14], also known as the Strouhal number [15],

K = votc/Ac 9)

which is the ratio between the correlation timeof the velocity field and itsweeping time
defined asTy,, = A./vg Wherel. is the characteristic length of the velocity field. Taking

T, ~ 1, the Kubo number is a dimensionless measure..ofWe will analyse the 2D case
essentially for two reasons: the first one is that in this case there already exists an analytical
prediction for the behaviour d#(K) as a function of very large but finit€ [16] and the second

one is that the 2D problem is more convenient from a numerical point of view. However, we
do not expect a strong dependence of our analysis on the space dimension.

In section 2 we briefly review some previous works on rather simplified models of random
fields. Section 3 is devoted to the introduction and the diffusive properties study of more
complicated random fields. We shall see that the asymptotic behaviour, i 911, is not
universal but depends on the details of the fields. Section 4 contains our conclusions.

2. The problem

In the case of a 2D, homogeneous, isotropic, stationary delta-correlated in time random field,
i.e.

Cij(m,w',t,t/) = Rij(’l")T(lt—I,D (10)
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wherer = ¢ — ' and

T(t — 1)) = 2108(1 — 1) (11)
the eddy diffusivity tensor can be calculated using the Taylor formula [17] obtaining
D = Df; = D}, = Do+ 3vio (12)

wherev; is done by equation (8).
For non delta-correlated in time velocity fields, i.e. withjz — ¢'|) defined as

2 1—t
Tt —1']) = :Oe—% (13)

a useful dimensionless parameter is the Kubo number introduced in the previous section. An
interesting question is how the diffusive properties of the system changévaises.

This problem has been studied in the c&ge= 0 by Gruzinovet al[19], Isichenko [16]
and by Ottaviani [18]. The random velocity field, studied in [18], corresponds to

)\4 2 22
and  E(k) = CT”‘Ok?’eﬁkz (14)

T(t —1)) =

where the spectrurfi (k) peaks ak = f . This spectrum has also been studied by Kraichnan
in [20], comparing the patrticle d|ffu3|on calculated in two and three dimensions by computer
simulation with that obtained by the direct-interaction approximation (DIA).

For K « 1, analytical approximations dp(K) are available [10]; at the first order in
7. ~ K one has

DE + DE
DE = 11+ 2 /dkE(k)/ dtT(t)N— 2, ~ K. (15)

By contrast, for infiniteK one can predicD(K = oo) = 0 for a generic two-dimensional
incompressibldrozenvelocity field. This is because in such a field the test particles move
along the streamlines, which are closed with probability 1 in the generic case. In the case
of open streamlines like a steady shear flow due to the ballistic motion, superdiffusion takes
place.

As discussed in [18] the interesting problem is the désg 1 but not infinite. Actually,
in this regime, an estimate @ (K ) with simple argument is not trivial. The difficulty comes
from the fact that whereas most of the particles are constrained to almost closed trajectories
of sizea = O().) for long times of order, ~ K, a small fraction is allowed much longer
excursions with much shorter correlation times. Over a long time, any given particle would
experience long periods of small displacements (effective trapping) and short periods of long
excursions, where most of the contribution to the diffusivity comes from.

In [16, 21] the authors introduce the asymptotic exponeatd < 1 defined as

D(K) ~ K@ K> 1 (16)

An estimate ofx is done in [19] and [16] following a percolation theory analysis of effective
diffusionin atwo-dimensional random, incompressible, time-dependent flow and the suggested
value is-3

The numerical simulations in [18] give the correct linear behavioud @) for small K,
but in the opposite regime the found valuenofs close but different{ = 0.2 £+ 0.04) from
the one predicted by the percolation theory. The linear behaviour takes plac& frorh0—3
to K ~ 1, then there is a transition region betwen~ 1 andK ~ 10? and finally the
power law occurs in the rangé € [10, 10%]. The crossover arounkl = 1 can be physically
explained as follows. Whe’ < 1, before having the time to travel across the tracer
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particle experiences many different changes of the velocity field (becausd},,); therefore

the Lagrangian correlation timg (the correlation time of the particle) is of the ordermf
Because we are interested in the tracer’s behaviour over distances much larger thkimg

as elementary time step, the motion of the particle can be thought of as a Brownian motion
corresponding to a linear diffusivitip ~ ..

3. Random advective flow with non-separable correlation function: numerical results

The random field discussed in the previous section has a separable correlation function
which implies scale-independent correlation times and thus a rough description of turbulence.
Actually, in turbulent flows many different scales and thus many differents times are involved.
This is why we introduce random fields with non-separable correlation functions and with
different characteristic times(k) corresponding to different scalegil
Let us consider a random field periodic in space, with pefiaaiboth directions and with
correlation functiorC;; (x, ', ¢, t'), the Fourier transform of which is

Cij(k. K 1,1") = 2m)?8 (k + K)Ri; (k)T (k. |t — ']). 17)
The functionR;; (k) andT (k, |t — 1'|) are defined as

Rij(k) = (8K — kik)) f (k) and Pk, - =e"W. (18)
T (k) is the characteristic time of the wavevectgrthe functionf (k) is related to the field
energy spectrunk (k) (see appendix A) by the formula
1
2

with [dkE(k) = Y, C;;(0,0) = vé, and the characteristic length of the system has been
evaluated as

o JAE(K)Kk?  [dkE(k)k?

E(k) = — k3 f (k) (19)

> — = 20
¢ [ dkE (k) vg (20)
We have considered the following three spectra.
Case 1. The spectrunE (k) is defined as
Ak3 k e[0,k!]
Ei(k) = { Bik~3 k e[kl k] (21)
Cie7* k> k.
Case 2. The spectrunk (k) is defined as
Ak® k e[0,k!]
Ea(k) = { Bok~3 ke [kl kL] (22)
Ce* k> k.
Case 3. The spectrunE (k) is defined as
Ask® k e[0,k]
E3(k) = { Bsk? k e[kl kL] (23)

Cse™* k>kl.
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The first spectrum corresponds to the Kraichnan—Batchelor model for the 2D, stationary,
homogeneous and isotropic turbulence [22, 23], say to the bidimensional turbulence in the
direct enstrophy cascade regintbe second one corresponds to the bidimensional turbulence
in the inverse energy cascade regirf8] which is equal to the spectrum predicted by the
Kolmogorov theory for the 3D, stationary, homogeneous and isotropic turbulence. Moreover,
the first two spectra correspondlteal interactionshetween the scales in the inertial range of
the corresponding velocity fields [24] while the third one does not.

In all the cases, following the definition efldy turnover timassociated with the scale
I ~ 1/k in the turbulence phenomenology [24], the correlation time functi@n has been
chosen equal to/1k? (k) ~ k=2 E(k)~2, namely:

Case 1. The correlation time function is

Dik—3 ke (0,k!]
k) =c, - {1 k e [kl k!,] (24)
Gk 2et  k>kl.

Case 2. The correlation time function is

Dok—3 ke (0,k%]

k) =c; - § k3 k e[kl kL] (25)
Gk 2e k> kb

Case 3. The correlation time function is
Dsk™3 ke (0,k!]
5

3k) =c; - { k72 k e[kl k] (26)
Gk e k >kl

The constants;, C; and D;, G; are chosen to ensure the continuityfofk) andz (k) in k7,
andk!,. B; are determined by the conditighdk E (k) = v3. The expression of the constants
as functions ok’ andk!, is reported in appendix B. The characteristic correlation timef
the random fields can be estimatedrdbna Wherekmay is the wavenumber corresponding
to the maximum of the energy spectrum. Thus in the first two casest (k! ), while in the
third oner, = t(k},). For (24)—(26) the characteristic time corresponds to the minima of the
correlation time functiorr (k). The sweeping timé&;,, is fixed once the characteristic lengths
1) are calculated by (20). Therefore the Kubo numi&k= vot./A., is changed varying,
in (24)—(26).

For K « 1 using (15) one has the linear behaviour

DE +DE 00
Df = “TZZ ~ D0+%/dkE(k)/ de T (k, 1)
0
= Do+ %/dkE(k)t(k) = Do+ 3D.c; (27)

whereD, = [ dkE(k)t(k)/c.. The constant; is linearly proportional to the Kubo number
via the definition of;. and therefore the linear behaviour is found. Inthe opposite likhiy 1,
due to the presence of the molecular diffusion and the alfraznfield we expect thab (K)
assume a value which does not dependkohut just onDgy and the steady velocity field. In
figures 1-3 the non-dimensional diffusiob (K) — Do)/(ngm) is shown as a function df .
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Figure 1. The dimensionless differend®(K) — Do)/(ngm) versusk corresponding to the

case (21) and (24) deo/(ngsw) = 0.005 74. The dashed line corresponds to the predicted linear
behaviour and the other corresponds to the power law behakiotiwith « = 0.17 + 0.015.
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Figure 2. The dimensionless differend®(K) — Do)/(véTsw) versusk corresponding to the

case (22) and (25) deo/(ngsw) = 0.005 74. The dashed line corresponds to the predicted linear
behaviour and the other corresponds to the power law behakiotiwith « = 0.16+ 0.015.

Itis evident that the predicted linear behaviour(fK ) takes place fok < 1 while after
a transition region a power law behaviakir® seems to occur with two different values of the
exponentr: a; >~ ap >~ 0.165 whileaz >~ 0.045.

The above results have been obtained performing direct numerical simulations of the
auxiliary equation (5) by using a pseudo-spectral method [25] over the periodicthaxz
with a resolution 64x 64, de-aliasing has been obtained by a circular truncatiofkfop
& [26,27].

In order to assure the incompressibility of the bidimensional velocity field we have
introduced the stream functiah in such a way that

oy oy
= — V) = ——
0x2 0x1
which corresponds in the Fourier space to

1 = +ik21& Uy = —ikllz. (29)

V1 (28)
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Figure 3. The dimensionless differend®(K) — Do)/(ngm) versusk corresponding to the
case (23) and (26) deO/(ngsw) = 0.005 74. The dashed line corresponds to the predicted linear
behaviour and the other corresponds to the power law behakiotiwith @ = 0.045+ 0.003.

Using (29) and (18) the velocity correlation function (17) can thus be substituted by the stream
function correlation which results in

(W (k, Y (K, 1)) = 2m)28(k + k') f(R)T (k, |t — 1']). (30)
In order to satisfy relation (30) the stream function has been generated taking
Yk, t + At) = ayr (k. 1) + bib (k. 1) (31)
a=e W b=+v1-a2 (32)
wherew(k, t) is a zero average Gaussian variable such that
D
(w(k, W, 1)) = (Zﬂ)zw())f(k)é(k +Ek)S(r —1") (33)
T
generated taking

Redb (k. 1) = (21)ba(k, 1)y/Dof ()/ 2t (k) (34)
Im i (k. 1) = (21)bz(k. 1)/ Dof )/ @r (k)

with b, andb, Gaussian numbers such that

(b1(k, )by(K', 1)) = 8(k +K)8(t — 1) (35)
(ba(k, )ba(K', 1)) = 8(k + KNS (t — 1) (36)
(b1(k, D)ba(K', 1)) = 0. (37)

In this way, due to equation (19), we are sure that at each time the assumed spectra (21)—(23)
for the random velocity field are actually achieved. Figure 4 shows the spectra of the random
velocity field at time 18A¢ for the spectrum of case 1. Figure 5 shows the temporal correlation
function of the random velocity field calculated for— ¢'| = 10A¢ in case 1.

The boundaries of the inertial range have been fixeld,at 4 andk!, = 18 in order
to maximize the inertial range ensuring a good numerical approximation of the condition
[ dkE(k) = v5 = 1.

The convergence of the algortithm has been tested using steady and time-depending
random shear flows parallel to thedirection. Inthese cases, actually, the analytical expression
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Figure 4. The spectrunt (k) versusk in the case (21) and (24) at time38r for Do/ (v3Ts,) =
0.00574,K = 3.83. The spectra have been averaged ov&réglizations of the random velocity

field.

100 g T

10 ;7 k-3/2 ek/Z
g 1 ;* \MWMN‘/ E
= F const

0.1 =
0.01 |

1 10

Figure 5. The correlation time function(k) versusk in the case (21) and (24) far—t'| = 10A¢
and Do/ (v3T,,) = 0.00574,K = 3.83. The correlation time have been calculated by averaging
over 16 realizations of the random velocity field.

of the eddy diffusivity tensor is known [4,10] and for time-dependent velocity fields results in

1 k?
E _ S 1 7+ 2
Df = D0<1+ L fdk/dww2+D§k4<|v<k,w>| >> (38)
DE = Dy DE =o. (39)

The calculated diffusion coefficients agree with the theoretical values (38) and (39) within
errors of less than 1%.

The eddy diffusivity tensor has been calculated up to tingex 10°z. with a time step
At ~ 103z, which, however, has to be smaller than,ay ~ 2 x 1041, /c,. This upper limit
has been fixed in order to avoid the temporal instability of the algorithm due to the advecting
term of the auxiliary equation [28]. Doubling the resolution of the numerical method, the
calculated values of the eddy diffusivity tensor do not change significantly.

In figure 6 an example of temporal convergence of the calculated diffugiitis shown.
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Figure 6. The dimensionless diffusivitp? /(v3T,,,) with D¥ = (D£, + D) /2 andD5 done by
equation (6) versus/z. in the case (22) and (25) f(ﬂo/(vSTw) = 0.00574 andk = 1.83.

4. Summary and conclusions

In order to mimic the passive scalar diffusion in a turbulent flow we have considered the
diffusion in a homogeneous, isotropic, stationary random velocity field non delta-correlated
in time with correlation functions (17) and (18). Using the multiscale technique, we have
then studied the non-dimensional diffusioR(K) — Do)/(v(z)Tsw) as a function of the Kubo
numberk in the case of three different energy spectra: the first one proportiokaftdhe
second one proportional 103 in the inertial range and the third one proportionatfo The

first two spectra correspond respectively to tiect enstrophy cascade regiraadinverse
energy cascade regina the 2D turbulence and their power la@w” with y > 1 ensures

local interactions between the scales in the inertial range. The third one corresponds to the
equipartition of kinetic energy among all spatial Fourier modes in three dimensions and, having
exponenty < 1, it does not correspond to a velocity field dominated by the infrared modes
of the spectrum as in the previous cases. In all the cases we have found a linear behaviour for
K <« 1and apower behaviouf— for finite K > 1, witha >~ 0.165 in the first two cases and

a =~ 0.045 in the third one. The linear behaviourBfK) is predicted by different analytical
approximations whereas for the power behaviour there exists an estimate of the exjployent
Isichenkoet al [16, 19] for 2D random, incompressible, time-dependent flows \Wigh= 0
suggesting the valu%. Ottaviani [18] found the value = 0.2 4+ 0.04 for the random field
specified in (14), thatis with a unique correlation time and the spectrum proportidﬁaﬁ’éz.

The indication arising from our numerical analysis is that the power law behaviour of the
diffusivity D(K) for finite K > 1 is not universal but depends on the spectii(h) and the
characteristic times at different scales of the considered system. However, the values of the
first two exponents suggest that the power law of the diffusivity could be universal for the
velocity field withlocal spectra.
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Appendix A

Let us consider a bidimensional random incompressible velocitydig@idz), with correlation
tensor

(vi(z, (@, 1)) = Cij(x, x', 1, 1), (A1)

If the random field is Gaussian, homogeneous, statistically stationary, isotropic,
incompressible, zero average, the correlation te@sdr, ) can be written as follows [29]:

Cij(r.7) = 8,Cy(r, 7) + %(C,,(r, )= CL(r 1)) (A2)

whereCy = (vy(x, t)vy(@', 1)), C1 = (v, (z, vy (&, 1)) andvy = v - 4,, v, =v-2,. The
incompressibility condition leads to

r
CL=C||+§8,CH. (A3)

For incompressible flow, the Fourier transfo@q (k, ) of Ci;(r, v) has the simple
expression

Ciy(k, ) =M, (k) f(k, T) (A4)
where
2 .
I, (k) = 8;,k* — kjk, f(k, ) = —Eakc”(k, 7). (A5)

The relation between the energy spectriirtk) of the flow and the functiory (k) can be
established as follows: by definition the total energy of a fluid is

E=7) (ui)(0,0)=) Ci(0,0

1 .
= Z G /dk:C,-,-(k, 0)

1

= Z(ZT)Z/dkni,-(k)f(k,O). (AB)
Assumingf (k, 0) = f(k), we derive

B 1 ) B 2 [e'S) 3

= W/dkk fk) = (271)2/0 dG/O dk k° f (k). (A7)
From (A7) the relation betweeB (k) and f (k) for bidimensional flows is deduced:

Ek) = —K3f k). (A8)
2

Let us now consider the case of a correlation tensor such that

Do _
Cjtrit—t)=R@T(r—1])  with T(r—1])=—Ce . (A9)
. ro

In the Fourier space (A9) becomes

(i (e, YD, (K, 1)) = (27)%8 (k + k) Ry ()T ()t — 1) (A10)
where, for the supposed isotropy of the velocity field

Rij(k) = (kK28;; — kik)) f (k). (A11)
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Appendix B

The values of the spectra parametérsB;, C;, D; andG, depend ork/, andk!, as follows:

Case 1.

A1 = Blké_s B]_ = Ué

3 1 1 _3
PR Ci=Bikl, eh (8D
m M M

D, = k;13 G = k}1‘,13/297k’1‘4/2 c; = Blil/z. (BZ)

Case 2.

Az =Bkl *® B,

D,

8ugk., Kl >

—5/3 x!
= Cyo= szl e/("” (B3)
141 % + (8 — 12k! k!, 2 Y

_ k’{17/3 G2 _ kIIWS/Ge_k’IW/z cr = 32—1/2_ (B4)

Case 3.

12Uc2)

Az = Bkl Bz = C3 = Bak}, " (BS)

—kL3+ 4kt P+ 12!

Ds=k"? Gy=kl ew2 o =By (B6)
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